LTE-U Forum:
Alcatel-Lucent, Ericsson, Qualcomm Technologies Inc., Samsung Electronics & Verizon

LTE-U SDL Coexistence Specifications V1.0 (2015-02)

Disclaimer and Copyright Notification
Copyright © 2015 LTE-U Forum Companies: Alcatel-Lucent, Ericsson, Qualcomm Technologies Inc., Samsung Electronics, Verizon. All rights reserved.

This document provides initial information related to Long Term Evolution (LTE) technology operation using unlicensed spectrum as a Supplemental Downlink to LTE technology operation using licensed spectrum. All information provided herein is subject to change without notice. The information provided herein was considered technically accurate by the LTE-U Forum Companies at the time the documents were initially published, but LTE-U Forum Companies disclaim and make no guaranty or warranty, express or implied, as to the accuracy or completeness of any information contained or referenced herein. LTE-U FORUM COMPANIES DISCLAIMER ANY IMPLIED WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE, AND ALL SUCH INFORMATION IS PROVIDED ON AN “AS-IS” BASIS. Other than as explicitly provided below, LTE-U Forum is not providing any licenses under any intellectual property of any kind owned by any person (whether an LTE-U Forum Company or otherwise) that may be necessary to access or utilize any of the information contained herein, including but not limited to any source materials referenced herein, and any patents required to implement or develop any technology described herein. It shall be the responsibility of the developer to obtain any such licenses, if necessary.

LTE-U Forum disclaims liability for any damages or losses of any nature whatsoever whether direct, indirect, special or consequential resulting from the use of or reliance on any information contained or referenced herein.

Permission is given to reproduce this document in its entirety solely for the review, analysis, and implementation of LTE-U. Use of this document for any other reasons without the permission of LTE-U Forum Companies is explicitly prohibited.
Contents

Foreword.. 3

1 Scope.. 4

2 References .. 4

3 Abbreviations .. 4

4 Background ... 4

 4.1 Band definitions for LTE-U in 5 GHz... 5
 4.2 Channel numbers (EARFCN) for LTE-U bands .. 5
 4.3 LTE-U SDL CA scenarios.. 6

5 Coexistence Requirements .. 7

 5.1 Secondary Cell in unlicensed spectrum operation ... 7
 5.2 Opportunistic Secondary Cell OFF in unlicensed spectrum ... 7

6 Test Cases .. 7

 6.1 Channel selection .. 7

 6.1.1 Clean channel selection ... 7

 6.1.2 Channel selection for inter-operator LTE-U ... 8

 6.2 Co-channel coexistence .. 8

 6.2.1 Channel sharing with a full buffer Wi-Fi link ... 8

 6.2.2 Channel sharing with two full buffer Wi-Fi links ... 9

 6.2.3 Channel sharing for inter-operator LTE-U and Wi-Fi ... 9

 6.2.4 Channel sharing between intra-operator LTE-U eNBs ... 10

 6.3 Opportunistic SDL ... 10

 6.3.1 Opportunistic SCell OFF ... 10
Foreword

This Technical Specification has been produced within the LTE-U Forum.
1 Scope

The present document establishes the coexistence requirements for LTE-U SDL operation on E-UTRA Base Station (BS).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

[2] “Base Station (BS) minimum requirements for LTE-U SDL”, LTE-U Forum

3 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Wi-Fi Access Point</td>
</tr>
<tr>
<td>BS</td>
<td>Base Station</td>
</tr>
<tr>
<td>CCA</td>
<td>Clear Channel Assessment</td>
</tr>
<tr>
<td>CCA-CS</td>
<td>CCA-Carrier Sensing</td>
</tr>
<tr>
<td>CCA-ED</td>
<td>CCA-Energy Detection</td>
</tr>
<tr>
<td>DUT</td>
<td>Device Under Test</td>
</tr>
<tr>
<td>LBT</td>
<td>Listen-Before-Talk</td>
</tr>
<tr>
<td>LTE-U</td>
<td>LTE-Unlicensed</td>
</tr>
<tr>
<td>OTA</td>
<td>Over The Air</td>
</tr>
<tr>
<td>PCell</td>
<td>Primary Cell</td>
</tr>
<tr>
<td>SCell</td>
<td>Secondary Cell</td>
</tr>
<tr>
<td>SDL</td>
<td>Supplemental DownLink</td>
</tr>
<tr>
<td>STA</td>
<td>Station (Wi-Fi device)</td>
</tr>
<tr>
<td>U-NII</td>
<td>Unlicensed National Information Infrastructure</td>
</tr>
<tr>
<td>WGN</td>
<td>White Gaussian Noise</td>
</tr>
</tbody>
</table>

4 Background

LTE-U is a radio access technology that has been proposed for providing carrier-grade wireless service in the 5GHz unlicensed band. Until today, Wi-Fi (WLAN that uses the IEEE 802.11 standard) has been the most popular choice for radio access in the unlicensed space. However, recent studies have highlighted that LTE technology, originally envisioned for cellular operation in licensed bands, has significant performance gains over Wi-Fi when operating in the unlicensed band. The main advantages for LTE-U over Wi-Fi as an access technology stem from better link performance, medium access control, mobility management, and excellent coverage. These benefits combined with the vast amount of available spectrum (> 400MHz) in the 5GHz band make LTE-U a promising radio access technology in the unlicensed arena.

Since Wi-Fi devices are already widespread in the 5GHz unlicensed band, there is a need for newly deployed LTE-U Small Cell (SC) to coexist with the Wi-Fi ecosystem. Moreover, different LTE-U operators may occupy the same spectrum in the unlicensed band to provide data services to their users. Such an unplanned and unmanaged deployment of LTE-U SCs (femtocells, picocells) may result in excessive RF interference to the existing co-channel Wi-Fi and other operator LTE-U nodes in the vicinity. It is therefore critical for LTE-U SCs to choose the best operating channel while minimizing the interference caused to nearby Wi-Fi and LTE-U networks. However, there are scenarios where all available channels are occupied by Wi-Fi devices which forces LTE-U SC to operate on the same channel as Wi-Fi. Wi-Fi devices do not back off to LTE-U unless its interference level is above the energy detection threshold (-62dBm over 20MHz). Without proper coexistence mechanisms, LTE-U transmissions could cause considerable interference on Wi-Fi network relative to Wi-Fi transmissions.
Among many possible LTE-U deployment options, this document focuses on supplemental downlink (SDL) deployment in unlicensed band, which will be paired with a licensed LTE carrier as carrier aggregation mode in legacy LTE (up to 3GPP Rel-12). This deployment will target the regions without listen-before-talk (LBT) requirements such as US (for example, U-NII radio bands in the US covering 5.15 GHz – 5.85 GHz regulated by the FCC).

The following three sub-clauses summarize the LTE-U band & EARFCN numbering and CA combinations defined in [1] and [2].

4.1 Band definitions for LTE-U in 5 GHz

The 5GHz unlicensed spectrum in the US is divided into mainly three different bands with different RF requirements. These are the three Unlicensed National Information Infrastructure (U-NII) bands. These three bands are U-NII-1 (5150-5250MHz), U-NII-2 (5250-5725MHz), and U-NII-3 (5725-5850MHz). Note that 5350-5470MHz segment in U-NII-2 is restricted from usage by FCC. In addition, the 60MHz in 5590-5650MHz are currently blocked by FCC for TDWR interference issues.

Considering that U-NII-2 band has the additional requirement of DFS, it is recommended that U-NII-2 band can be considered for LTE-U in the future.

It should be noted that for SDL, only FDD carrier aggregation (CA) is needed for the CA with a LTE FDD licensed carrier. The following band numbering will be used for the U-NII bands.

- **U-NII-1**
 - Band number 252 for U-NII-1 spectrum (5150-5250MHz).

- **U-NII-2**
 - Band numbers 253 and 254 are reserved for U-NII-2 spectrum (5250-5725MHz) for future usage.

- **U-NII-3**
 - Band number 255 for U-NII-3 spectrum (5725-5850MHz).

4.2 Channel numbers (EARFCN) for LTE-U bands

The existing LTE has a 100 kHz channel raster. This will be problematic for a very wide spectrum such as 5 GHz unlicensed band, given that the search space (hypothesis) is too large for eNB (or UE).

Considering that LTE deployment of interest in 5 GHz unlicensed spectrum is 20 MHz, it makes sense to align the channel raster with 20 MHz Wi-Fi channel, which is one every 20 MHz. In addition to these carrier frequencies (e.g., \(f_1, f_2 (=f_1+20MHz), f_3 (=f_1+40MHz), \ldots \)), it would be necessary to introduce additional carrier frequencies around 20 MHz channel raster to allow aligning the subcarriers for the case of intra-band contiguous CA where the carrier spacing should be a multiple of 300 kHz as per the current specification. For example, around \(f_1 \), \(f_1-200kHz \), \(f_1-100kHz \), \(f_1 \), \(f_1+100kHz \), \(f_1+200kHz \) can be introduced, around \(f_2 \), \(f_2-200kHz \), \(f_2-100kHz \), \(f_2 \), \(f_2+100kHz \), \(f_2+200kHz \), and so on.

In order to allow future extension for additional channel locations, all the channels with a 100 kHz channel raster will be reserved over 700 MHz (5150 – 5850 MHz) spectrum in 5 GHz unlicensed spectrum. However, the LTE-U operation will be limited only to the following carrier frequencies for U-NII-1 and U-NII-3, respectively.

- **U-NII-1**
 - \(\{f-0.2, f-0.1, f, f+0.1, f+0.2 \mid f = 5160, 5180, 5200, 5220, 5240 \} \) MHz

- **U-NII-3**
 - \(\{f-0.2, f-0.1, f, f+0.1, f+0.2 \mid f = 5745, 5765, 5785, 5805, 5825 \} \) MHz

With these reduced set of carrier frequencies, the search space by eNB (or UE) can be significantly reduced. The proposed EARFCN is illustrated in Figure 4.2-1 and presented in Table 4.2-1.
4.3 LTE-U SDL CA scenarios

The LTE-U SDL CA scenarios under consideration are summarized in Table 4.3-1. All cases are FDD CA with unlicensed being DL only, i.e., SDL use case.

Table 4.3-1: LTE-U SDL CA scenarios

<table>
<thead>
<tr>
<th>Band Number</th>
<th>$F_{DL,\text{low}}$ [MHz]</th>
<th>N_{DLs-DL}</th>
<th>Range of N_{DL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>252</td>
<td>5150</td>
<td>255144</td>
<td>255144-256143</td>
</tr>
<tr>
<td>255</td>
<td>5725</td>
<td>260894</td>
<td>260894-262143</td>
</tr>
</tbody>
</table>

For operations in Band 252, only the following set of DL EARFCNs is allowed.

$N_{DL,\text{allowed}} = \{ n-2, n-1, n, n+1, n+2 \mid n = 255244, 255444, 255644, 255844, 256044 \}$

For operations in Band 255, only the following set of DL EARFCNs is allowed.

$N_{DL,\text{allowed}} = \{ n-2, n-1, n, n+1, n+2 \mid n = 261094, 261294, 261494, 261694, 261894 \}$

Note 1: There is no Wi-Fi channel at 5160 MHz. The first 20 MHz Wi-Fi channel starts at 5180 MHz. Therefore, the first 5 allowed EARFCNs (255242-255246) for band 252 do not correspond to the 20 MHz Wi-Fi channel.

Note 2: There is no EARFCN corresponding to the lower edge (5725-5735 MHz) and the upper edge (5835-5850) of U-NII-3 due to the lack of 20 MHz channel availability.
5 Coexistence Requirements

5.1 Secondary Cell in unlicensed spectrum operation

- eNB shall be able to create an ON/OFF time pattern on SCell when other Wi-Fi or other operator LTE-U co-channel nodes are sensed with energy level above CCA-ED (=-62 dBm). It is left to optimization for behavior for the nodes below CCA-ED.
 - **SCell ON-state**: SCell is transmitting according to 3GPP LTE Rel-10 or later releases specification.
 - **SCell OFF-state**: SCell ceases all transmissions, including sync signal, SI signals, CRS, and etc., except 3GPP Rel-12 discovery signal when configured.
 - The duty cycle can change over time for instance based on channel usage.
- Network should manage the duty cycle of LTE-U activity to pass the coexistence tests listed in clause 6, and shall meet coexistence requirements in the operating band.
- eNB shall transmit MIB and SIB1 on SCell in unlicensed spectrum when SCell is ON-state.

5.2 Opportunistic Secondary Cell OFF in unlicensed spectrum

- eNB shall put SCell in OFF-state when SCell is not needed such as no UE in SCell coverage or there is no data in buffer for users in SCell coverage.

6 Test Cases

6.1 Channel selection

6.1.1 Clean channel selection

Test objective:

This test is to verify that LTE-U eNB (DUT) selects the clean channel among available channels in unlicensed spectrum.

Test setup:

Test shall assume the two available channels for SCell in unlicensed spectrum to be CH1 and CH2 each of 20MHz bandwidth.

A Wi-Fi link (between an AP and a STA) with full buffer UDP traffic shall be configured on CH1.

Test layout shall ensure that the Wi-Fi RSSI from the Wi-Fi AP on DUT is above CCA-ED threshold (= -62 dBm) and shall ensure a line of sight between all the nodes in the test. This test is performed in OTA.
DUT shall be turned on with 20 MHz SCell in unlicensed spectrum. Only available channels for SCell in DUT shall be CH₁ and CH₂.

Test metrics/criteria:
DUT shall choose CH₂ for SCell operation within [the manufacturer declared time].

The rate of correct events observed during repeated tests shall be at least 90%.

6.1.2 Channel selection for inter-operator LTE-U

Test objective:
Orthogonalization in frequency for different LTE-U operators is an important coexistence tool for inter-operator LTE-U when the number of available channels is enough for orthogonalization. This test is to verify that LTE-U eNB (DUT) selects the channel with the same operator LTE-U eNB over the channel with a different operator LTE-U eNB when all the conditions in the channels are equivalent.

Test setup:
Test shall assume the two available channels for SCell in unlicensed spectrum to be CH₁ and CH₂ each of 20MHz bandwidth.

A LTE-U transmission (eNB₁) with the same PLMN ID as DUT shall be configured on CH₁ and a LTE-U transmission (eNB₂) with a different PLMN ID on CH₂. eNB₁ on CH₁ shall be the part of test equipment and not the part of DUT.

Full-buffer UDP traffic shall be configured on all downlinks. Test shall ensure 100% channel occupancy from eNB₁ and eNB₂ on CH₁ and CH₂ respectively.

Test configuration shall have the RSSI from eNB₁ at DUT on CH₁ is -60 dBm, and the RSSI from eNB₂ at DUT on CH₂ -60 dBm. This test is performed in conducted.

DUT shall be turned on with 20 MHz SCell in unlicensed spectrum. Only available channels for SCell in DUT shall be CH₁ and CH₂.

Test metrics/criteria:
DUT shall choose CH₁ for SCell operation within [the manufacturer declared time].

The rate of correct events observed during repeated tests shall be at least 90%.

6.2 Co-channel coexistence

6.2.1 Channel sharing with a full buffer Wi-Fi link

Test objective:
This test is to verify the maximum medium occupancy for LTE-U eNB (DUT) when the channel is shared with a full buffer Wi-Fi link.

Test setup:
Test shall assume a single available channel for SCell in unlicensed spectrum of 20MHz bandwidth.

DUT shall be configured with 20 MHz SCell on that channel with a LTE-U UE. Full buffer UDP traffic shall be configured for DUT. The distance between DUT and UE shall not exceed 12 feet and not be less than 1 foot.

A Wi-Fi link (between an AP and a STA) with full buffer UDP traffic shall be configured on that channel. The distance between the AP and STA shall not exceed 12 feet and not be less than 1 foot.

Test layout shall ensure that the Wi-Fi RSSI from the Wi-Fi AP on DUT is above CCA-ED threshold (= -62 dBm) and shall ensure a line of sight between all the nodes in the test. This test is performed in OTA.

Test metrics/criteria:
In each test, DUT shall meet the following requirements from the manufacturer declared time (after warm-up period).
- DUT SCell duty cycle (= integral of T_{on}/integral of $(T_{on}+T_{off})$) ≤ 50 %.
 - T_{on}: SCell ON-state duration
 - T_{off}: SCell OFF-state duration
- DUT SCell $T_{on,max}$ ≤ 50 msec.
 - $T_{on,max}$ is defined as the maximum continuous ON duration within SCell ON-state. Almost blank subframe is not considered to be ON in SCell ON-state.
- Wi-Fi throughput ≥ 4Mbps.
- LTE-U throughput on SCell ≥ 4 Mbps.

The rate of correct events observed during repeated tests shall be at least 90%.

6.2.2 Channel sharing with two full buffer Wi-Fi links

Test objective:

This test is to verify the maximum medium occupancy for LTE-U eNB (DUT) when the channel is shared with two full buffer Wi-Fi links.

Test setup:

Test shall assume a single available channel for SCell in unlicensed spectrum of 20MHz bandwidth.

DUT shall be configured with 20 MHz SCell on that channel with a LTE-U UE. Full buffer UDP traffic shall be configured for DUT. The distance between DUT and UE shall not exceed 12 feet and not be less than 1 foot.

Two Wi-Fi links (each between an AP and a STA) with full buffer UDP traffic shall be configured on that channel.

Test layout shall ensure that the Wi-Fi RSSI from the Wi-Fi AP on DUT is above CCA-ED threshold (= -62 dBm) and shall ensure a line of sight between all the nodes in the test. This test is performed in OTA.

Test metrics/criteria:

In each test, DUT shall meet the following requirements from the manufacturer declared time (after warm-up period).

- DUT SCell duty cycle (= integral of T_{on}/integral of $(T_{on}+T_{off})$) ≤ 33 %.
- DUT SCell $T_{on,max}$ ≤ 50 msec.
- LTE-U throughput on SCell ≥ 4 Mbps.

The rate of correct events observed during repeated tests shall be at least 90%.

6.2.3 Channel sharing for inter-operator LTE-U and Wi-Fi

Test objective:

When the number of channels is not enough for orthogonalization in frequency for different LTE-U operators, bounding maximum LTE-U duty cycle in co-channel is another coexistence tool for inter-operator LTE-U. This test verifies the coexistence with Wi-Fi as well as opportunistic (probabilistic) coexistence with other operator LTE-U on co-channel.

Test setup:

Test shall assume a single available channel for SCell in unlicensed spectrum of 20MHz bandwidth.

A non-full buffer (a fixed 33% channel occupancy) LTE-U transmission (eNB$_1$) with a different PLMN ID from DUT shall be configured on that channel.

A Wi-Fi link (between an AP and a STA) with full buffer UDP traffic shall be configured on that channel.

DUT (eNB$_2$) shall be configured with 20 MHz SCell on that channel with a LTE-U UE. Full buffer UDP traffic shall be configured for DUT.

Test configuration shall have the RSSI from eNB$_1$ at DUT is -40 dBm, and the RSSI from DUT (eNB$_2$) at eNB$_1$ -40 dBm. This test is performed in conducted.

Test metrics/criteria:

In each test, DUT shall meet the following requirements from the manufacturer declared time (after warm-up period).
• DUT SCell duty cycle (= integral of T_{on}/integral of $(T_{on}+T_{off})) \leq 33 \%$
• DUT SCell $T_{on,max} \leq 50$ msec.

The rate of correct events observed during repeated tests shall be at least 90%.

6.2.4 Channel sharing between intra-operator LTE-U eNBs

Test objective:
This test verifies that same operator LTE-U eNBs (DUT) are able to run a higher reuse when the conditions are favourable.

Test setup:
Test shall assume a single available channel for SCell in unlicensed spectrum of 20MHz bandwidth.

Two LTE-U links (between an eNB$_1$ (DUT) and a UE$_1$, between an eNB$_2$ (DUT) and a UE$_2$) with full buffer UDP traffic shall be configured on that channel. Both eNB$_1$ and eNB$_2$ shall have the same PLMN ID and shall be from the same vendor.

Test configuration shall have the following setting.

- LTE-U$_1$ link SNR (eNB$_1$ RSSI at UE$_1$/ WGN) = LTE-U$_2$ link SNR (eNB$_1$ RSSI at UE$_2$/ WGN) = 30 dB
- LTE-U$_1$ link INR (eNB$_2$ RSSI at UE$_1$/ WGN) = LTE-U$_2$ link INR (eNB$_1$ RSSI at UE$_2$/WGN) = -10 dB
- eNB$_1$ RSSI at eNB$_2$ = eNB$_2$ RSSI at eNB$_1$ = -60 dBm

This test is performed in conducted.

DUT (eNB$_1$ and eNB$_2$) shall be configured with 20 MHz SCell on that channel with a LTE-U UE.

Test metrics/criteria:
In each test, DUT shall meet the following requirements from the manufacturer declared time (after warm-up period).

- $80\% \leq$ DUT SCell duty cycle < 100%
- LTE-U $T_{on,max} \leq 50$ msec.

The rate of correct events observed during repeated tests shall be at least 90%.

6.3 Opportunistic SDL

6.3.1 Opportunistic SCell OFF

Test objective:
This test verifies that LTE-U eNB (DUT) puts SCell in OFF-state when SCell is not needed such as no UE in SCell coverage or there is no data in buffer for users in SCell coverage.

Test setup:
Test shall assume a single available channel for SCell in unlicensed spectrum of 20MHz bandwidth.

DUT shall be configured with 20 MHz SCell on that channel with a LTE-U UE. Full buffer UDP traffic shall be configured for DUT in the beginning.

UE shall be removed from the coverage of SCell or no DL data is scheduled for SCell for the UE in the test. Vendors will choose either method to pass the test.

Test metric/criteria:
SCell shall be in SCell OFF-state within [the manufacturer declared time] from the time the associated UE has been removed or no DL data has been transmitted for SCell for the UE in the test.

The rate of correct events observed during repeated tests shall be at least 90%.